
Eclipse's Rich Client Platform, Part 1:
Getting started

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of contents
If you're viewing this document online, you can click any of the topics below to link directly to that
section.

1. Before you start ... 2
2. Overview of Eclipse and the RCP ... 3
3. Getting started with the RCP... 7
4. Defining a perspective ... 16
5. Defining the WorkbenchAdvisor and Application classes.................. 20
6. Creating a stand-alone application .. 27
7. Summary and resources ... 30

Eclipse's Rich Client Platform, Part 1: Getting started Page 1 of 30

Section 1. Before you start

About this tutorial
The first part of a two-part series, this tutorial explores Eclipse's Rich Client Platform
(RCP). An example application shows you how to assemble an RCP to create an
elegant, client-side interface for your own business applications. The application
creates a front end for the Google API and gives you the ability to query and display
search results. Having an application that demonstrates some of these technologies
in action provides an understanding of the platform and its usefulness within some of
your projects.

You should understand how to navigate Eclipse 3.0 and have a working knowledge
of Java to follow this tutorial. You do not need a background in Eclipse plug-in
development or an understanding of technologies such as the Standard Widget
Toolkit (SWT) and JFace. You'll explore each one of these complementary
technologies in detail over the course of this tutorial. After a brief introduction to these
technologies, the tutorial explores the code and supporting files so you can grasp
how to construct an RCP application. If you're new to Eclipse or its complementary
technologies, refer to the Resources on page 30 at the end of this tutorial for more
information.

Tools
Throughout the series, you'll explore various areas of the Eclipse Plug-In
Development Environment in detail. While not a prerequisite, you'll find this tutorial
easier to follow if you download, install, and configure Eclipse 3.0, a 1.4 Java Virtual
Machine, and Apache Ant. If you don't have these tools installed, please reference,
download, and install the following resources:

° Eclipse 3.0 is available at: http://www.eclipse.org/downloads/index.php
° Java 2 Standard Edition, Software Development Kit (SDK) is available at:

http://java.sun.com/j2se/1.4.2/download.html
° Apache Ant 1.6.1 is available at: http://ant.apache.org/

About the author
Jeff Gunther, a Studio B (http://www.studiob.com/) author, is the General Manager
and founder of Intalgent Technologies, an emerging provider of software products
and solutions utilizing the Java 2 Enterprise Edition and Lotus Notes/Domino
platforms. Jeff is an application and infrastructure architect with experience in
architecting, designing, developing, deploying, and maintaining complex software
systems. His diverse experience includes full lifecycle development of software
running on multiple platforms, from Web servers to embedded devices. You can
contact him at: jeff.gunther@intalgent.com.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 30 Eclipse's Rich Client Platform, Part 1: Getting started

http://www.eclipse.org/downloads/index.php
http://java.sun.com/j2se/1.4.2/download.html
http://ant.apache.org/
http://www.studiob.com/
mailto:jeff.gunther@intalgent.com

Section 2. Overview of Eclipse and the RCP

The maturation of Eclipse
Over the past few years the Eclipse project has grown dramatically and matured into
a powerful development environment. While you might traditionally think of Eclipse as
an integrated development environment (IDE) for software development, the 3.0
release of Eclipse will broaden the scope of the platform's relevance in the
marketplace. A little over a year ago members of the Eclipse community recognized
that many elements of the Eclipse IDE could be utilized in non-IDE applications.
When constructing business applications, developers could use the elegance of the
plug-in architecture, the responsive, native-looking user interface, and the
easy-to-use help system. By utilizing a common framework for developing business
applications, developers can focus their energies on addressing the specific
requirements of their application instead of wasting time reinventing a set of core
components. Eclipse 3.0 milestone 5 introduced the development community to the
RCP.

What is the RCP?
With the days of the browser wars behind us, many developers and users alike are
frustrated with the lack of innovation and advancement of the desktop Web browser.
While Web browsers enable organizations to deploy back-office applications to a
large number of users, trying to provide a useable interface that supports multiple
browsers on multiple operating systems burdens developers and managers. The
RCP is an exciting concept that looks to address the need for a single cross-platform
environment to create highly-interactive business applications.

Essentially, the RCP provides a generic Eclipse workbench that developers can
extend to construct their own applications. An application consists of at least one
custom plug-in and uses the same user-interface elements as the Eclipse 3.0 IDE.
Before jumping into creating the plug-in, familiarize yourself with the basic elements
of the Eclipse user interface, as Figure 1 shows.

Figure 1. The basic elements of the Eclipse user interface

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Eclipse's Rich Client Platform, Part 1: Getting started Page 3 of 30

The basic elements of the environment include:

1. Workbench -- The overarching container for all windows.
2. Perspective -- A visual container for all the opened views and editors.
3. View -- A visual container to display resources of a particular type. Typically, a

view contains a data grid or tree structure. In Figure 1, the tasks view is an
example of a view that is used within the Java perspective.

4. Short Cut Bar -- A set of icons that enables the user to quickly access different
perspectives.

5. Menu Bar -- A set of content-sensitive actions that gives the user the ability to
execute some predefined function.

6. Tool Bar -- A set of context-sensitive actions that enables the user to execute
some predefined function. All the items found within the toolbar appear within the
menu bar.

7. Editor -- Editors are the primary tool users employ to display and manipulate
data. In the case of the Eclipse IDE, developers use an editor to edit Java source
files.

Standard Widget Toolkit and JFace

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 30 Eclipse's Rich Client Platform, Part 1: Getting started

If you look at the source code that makes up the Eclipse Platform, you notice that the
Java standard windowing toolkits are not used. During the development of the
Eclipse Platform, the project produced two user-interface toolkits that you can use
outside of the Eclipse project. These toolkits include:

° Standard Widget Toolkit (SWT) -- SWT provides a platform-independent API that
is tightly integrated with the operating system's native windowing environment.
SWT's approach provides Java developers with a cross-platform API to implement
solutions that "feel" like native desktop applications. This toolkit overcomes many
of the design and implementation trade-offs that developers face when using the
Java Abstract Window Toolkit (AWT) or Java Foundation Classes (JFC).

° JFace -- The JFace toolkit is a platform-independent user interface API that
extends and interoperates with the SWT. This library provides a set of
components and helper utilities that simplify many of the common tasks in
developing SWT user interfaces. This toolkit includes many utility classes that
extend SWT to provide data viewers, wizard and dialog components, text
manipulation, and image and font components.

During the development of an RCP application you extensively use the SWT and
JFace classes. Refer to the Resources on page 30 for more information about these
two toolkits.

Eclipse plug-in architecture
Through the influence of its predecessor, IBM Visual Age for Java, architects made
the Eclipse Platform easily extensible. Figure 2 below illustrates the major
components of the Eclipse architecture.

Figure 2. The major components of the Eclipse architecture

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Eclipse's Rich Client Platform, Part 1: Getting started Page 5 of 30

Outside of the base files that make up the Eclipse Platform runtime, all of Eclipse's
functionality is implemented through the use of plug-ins. A plug-in is the base building
block that developers use to add new capabilities and functionality to the
environment. (See Resources on page 30 for an excellent developerWorks article on
Developing Eclipse plug-ins.) The Eclipse runtime is responsible for managing the
lifecycle of a plug-in within a workbench. All of the plug-ins for a particular
environment are located in a plugin folder within the directory structure of an RCP
application. Upon execution, the Eclipse runtime will discover all of the available
plug-ins and use this information to create a global plug-in registry.

For a plug-in to participate within the workbench, it must define a set of extensions.
An extension can add functionality directly to the base generic workbench, or extend
other existing extensions. Each of these extensions is defined within a plug-in's
manifest file. This XML file describes how all the extensions interoperate within the
Eclipse runtime and defines the necessary dependencies. The next section covers
the plug-in manifest and its tags in more detail.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 30 Eclipse's Rich Client Platform, Part 1: Getting started

Section 3. Getting started with the RCP

Steps to implement an RCP application
Before covering the specifics of developing an RCP application within Eclipse, review
the general steps for implementing this type of project.

1. Identify extension points
2. Define the plug-in manifest
3. Implement extensions
4. Define the WorkbenchAdvisor class
5. Define the Application class
6. Export the application

This section shows how to access the Plug-in Development Environment and
discusses the plug-in manifest.

Using the Plug-in Development Environment
One of the components of the Eclipse IDE is a specialized perspective called the
Plug-in Development Environment (PDE). This perspective provides everything you
need to create and package a custom Eclipse plug-in or RCP application. Access this
perspective by completing the following steps:

1. Launch Eclipse 3.0 from your workstation.
2. Select Window > Open Perspective > Other from the menu bar. This action will

prompt you with the Select Perspective dialog, as Figure 3 shows:
Figure 3. The Select Perspective dialog

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Eclipse's Rich Client Platform, Part 1: Getting started Page 7 of 30

3. Choose Plug-in Development from the list of perspectives and then click OK to
display the PDE perspective Figure 4 shows:
Figure 4. The PDE perspective

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 30 Eclipse's Rich Client Platform, Part 1: Getting started

Creating the project
With the PDE perspective opened in Eclipse, complete the following steps to create a
new project:

1. Select File > New > Plug-in Project from the menu bar to display the New
Plug-in Project wizard Figure 5 shows:
Figure 5. The New Plug-in Project wizard

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Eclipse's Rich Client Platform, Part 1: Getting started Page 9 of 30

2. Type Google into the Project name field.
3. Keep the defaulted values for this page and click Next to continue to the Plug-in

Content page Figure 6 shows:
Figure 6. The Plug-in Project Content page

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 30 Eclipse's Rich Client Platform, Part 1: Getting started

4. Type com.ibm.developerworks.google.GooglePlugin into the Class Name field
and click Next to continue to the Templates page.

5. Keep the defaulted values for the Templates page and click Finish.

Understanding the plug-in manifest
After you've completed the New Plug-in Project wizard, a project called Google will
be added to the Packages Explorer and you'll be presented with a page entitled
"Overview" as Figure 7 shows.

Figure 7. Welcome to Google Plug-in

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Eclipse's Rich Client Platform, Part 1: Getting started Page 11 of 30

This page is a powerful tool for editing the generated plug-in manifest. A plug-in
manifest is responsible for defining the resources, dependencies, and extensions the
Eclipse runtime will manage. The plug-in manifest for any project is located within the
project's root directory and is called plugin.xml. Each tab across the bottom of this
editor provides you with an easy way to access and manipulate a particular section of
this file.

The plugin.xml tab allows you to view the XML that each section of the editor
generates. For example, below you see the content of the plug-in manifest that the
New Plug-in Project wizard initially generates.

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.0"?>
<plugin

id="Google"
name="Google Plug-in"
version="1.0.0"
provider-name=""
class="com.ibm.developerworks.google.GooglePlugin">

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 30 Eclipse's Rich Client Platform, Part 1: Getting started

<runtime>
<library name="Google.jar">

<export name="*"/>
</library>

</runtime>
<requires>

<import plugin="org.eclipse.ui"/>
<import plugin="org.eclipse.core.runtime.compatibility"/>

</requires>

</plugin>

During this discussion, you primarily use the plugin.xml view to edit the plug-in
manifest. Although the editor is a helpful tool for learning the structure of a plug-in
manifest, you must understand the tags it generates and how they contribute to the
overall plug-in. The next two panels review each tag of a plug-in manifest and explain
its purpose.

Using the plug-in manifest tags
In order to create a basic RCP application, you need to add some additional content
to the plug-in manifest. Using the plugin.xml tab of the plug-in manifest editor, modify
the XML within the editor to reflect the following changes:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <?eclipse version="3.0"?>
3 <plugin
4 id="com.ibm.developerworks.google"
5 name="Google Plug-in"
6 version="1.0.0"
7 provider-name=""
8 class="com.ibm.developerworks.google.GooglePlugin">
9
10 <runtime>
11 <library name="Google.jar">
12 <export name="*"/>
13 </library>
14 </runtime>
15
16 <requires>
17 <import plugin="org.eclipse.ui"/>
18 <import plugin="org.eclipse.core.runtime"/>
19 </requires>
20
21 <extension id="googleApplication"
22 point="org.eclipse.core.runtime.applications">
23 <application>
24 <run class="com.ibm.developerworks.google.GoogleApplication"/>
25 </application>
26 </extension>
27
28 <extension point="org.eclipse.ui.perspectives">
29 <perspective
30 ="com.ibm.developerworks.google.GooglePerspective"
31 name="Google"
32 class="com.ibm.developerworks.google.GooglePerspective"/>
33 </extension>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Eclipse's Rich Client Platform, Part 1: Getting started Page 13 of 30

34
35 </plugin>

Next, you'll explore this plug-in manifest in detail.

Stepping through the plug-in manifest
Beginning with the <plugin> element, lines 3 through 8 start defining the body of
the plug-in manifest. This base tag contains all the extensions, extension points,
dependencies, and runtime constraints of the plug-in. In addition, the <plugin> tag
has the following five attributes:

1. name -- This attribute defines the general name of the plug-in.
2. id -- This attribute defines a unique identifier for the plug-in. To reduce any

naming collisions, you should derive this attribute from the Internet domain of the
plug-in's author. In this example, the id for this plug-in has been changed to
com.ibm.developerworks.google. This practice is consistent with other
Java naming conventions like class packaging.

3. version -- This attribute defines the plug-in version in a major.minor.service
format.

4. provider-name -- This attribute defines the author of this plug-in.
5. class -- This attribute defines the name of the plug-in class. Although a plug-in

class is defined, an RCP application does not use this class during execution.

Lines 10 through 14 define the runtime section of the plug-in manifest. Similar to the
concept of a classpath within a Java application, this section defines any local Java
libraries that are necessary during execution. Each Java library is listed within the
<runtime> element by using a <library> element. The library element can
contain a series of nested <export> elements. Each export element defines the
export mask for that particular library.

Lines 16 through 19 contain a <requires> element that defines any dependencies
on other plug-ins. Each plug-in is itemized through the use of a single <import>
element.

Lines 21 through 37 define two <extension> elements that the RCP application will
use. The next panel reviews the basic concepts of extensions and extension points.
The <extension> element has the following three attributes:

1. point -- This attribute defines a reference to an extension point being configured.
2. id - This optional attribute defines an identifier for this extension point

configuration instance.
3. name - This optional attribute defines a general name for this extension.

Understanding extensions
As previously mentioned in the Eclipse plug-in architecture on page 5 panel, the
Eclipse Platform is extremely extensible through the use of a relatively small runtime

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 30 Eclipse's Rich Client Platform, Part 1: Getting started

kernel and its elegant plug-in architecture. The use of plug-ins adds new functionality
to the runtime kernel. Each plug-in can contain any number of extensions that are
integrated through the use of extension points. Similarly, a plug-in can define its own
set of extension points that other developers can utilize within their own plug-ins or
RCP applications.

Examine the two <extension> elements of the previously presented plug-in
manifest.

1 ...
2 <extension id="googleApplication"
3 point="org.eclipse.core.runtime.applications">
4 <application>
5 <run class="com.ibm.developerworks.google.GoogleApplication"/>
6 </application>
7 </extension>
8
9 <extension point="org.eclipse.ui.perspectives">
10 <perspective
11 id="com.ibm.developerworks.google.GooglePerspective"
12 name="Google"
13 class="com.ibm.developerworks.google.GooglePerspective"/>
14 </extension>
15 ...

Lines 2 through 7 define the first extension through the
org.eclipse.core.runtime.applications extension point. This extension
declares the entry point for an RCP application. Within this extension element, an
<application> element is defined. A <run> element is within this tag. This <run>
element contains the class name that will be executed when the RCP application is
started. The second extension is between lines 10 through 17. This extension defines
a perspective through an extension point entitled
org.eclipse.ui.perspectives. This extension point adds perspectives to the
generic workbench. The next section explores the use of perspectives in more detail.

For more information about the various types of extension points that come with
Eclipse 3.0, refer to the Resources on page 30.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Eclipse's Rich Client Platform, Part 1: Getting started Page 15 of 30

Section 4. Defining a perspective

Overview of perspectives
Perspectives within the Eclipse workbench are a visual container for all opened views
and editors. In the previous panel, Using the Plug-in Development Environment on
page 7, you opened a specialized perspective called the PDE to start the Google
plug-in project. This perspective is specifically designed to provide developers with a
set of tools to develop custom plug-ins. End users of the perspective can see that the
creators of the PDE paid a lot of attention to the location and placement of the tools
within the workbench. As you begin the process of creating perspectives within your
own RCP applications, take into account the following considerations:

1. Define the perspective's purpose -- Since the Eclipse workbench only displays a
single perspective at a time, you want to group logical and functional areas of your
application into a unified perspective. This approach minimizes the need for the
user to toggle between different perspectives to accomplish a particular task. As
you work through and define each perspective's purpose, also keep in mind that a
view or editor cannot be shared between different perspectives. The number of
perspectives that any application will have is largely dependent on the
application's size and complexity. For our example Google application, only one
perspective is initially defined.

2. Define the perspective's behavior -- Depending on your application, a perspective
with its collective views, editors, and actions can be designed to perform distinct
functions. For example, the Java Browsing perspective within Eclipse 3.0 is
designed to provide you various types of information that are filtered based on a
set of selection criteria. This perspective's behavior filters information for you
using a series of consecutive views. In contrast, the Java perspective is a
collection of views, editors, and actions that give you the ability to edit and
compile Java code. This perspective's behavior is task-oriented and gives the end
user a set of tools to accomplish a particular goal.

Creating a basic perspective
After creating your plug-in project, creating a perspective is a two-step process. First,
modify the plug-in manifest to include a new extension that uses the
org.eclipse.ui.perspectives extension point. Second, using the attributes
from the new extension point, create a perspective class. Based on the earlier
discussion of extensions and extension points, the plug-in manifest for the Google
application already includes the following extension:

...
<extension point="org.eclipse.ui.perspectives">

<perspective
id="com.ibm.developerworks.google.GooglePerspective"
name="Google"
class="com.ibm.developerworks.google.GooglePerspective"/>

</extension>
...

The <perspective> element has the following attributes:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 30 Eclipse's Rich Client Platform, Part 1: Getting started

° id -- This attribute defines a unique identifier for the perspective.
° name -- This attribute defines a name for this perspective, and the workbench

window menu bar uses it to represent this perspective.
° class -- This attribute contains the fully qualified name of the class that

implements the org.eclipse.ui.IPerspectiveFactory interface.

Creating a basic perspective, continued
To create the perspective class within the Google project, complete the following
steps:

1. Select File > New > Class from the menu bar to display the New Java Class
wizard.
Figure 8. New Java Class wizard

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Eclipse's Rich Client Platform, Part 1: Getting started Page 17 of 30

2. Type GooglePerspective into the Name field.
3. Click on the Add button to display the Implemented Interfaces Selection dialog

box.
4. Type org.eclipse.ui.IPerspectiveFactory into the Choose Interfaces field and

click OK.
5. Click the Finish button to create the new class.

The wizard generates the following source code:

1 package com.ibm.developerworks.google;
2
3 import org.eclipse.ui.IPageLayout;
4 import org.eclipse.ui.IPerspectiveFactory;

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 30 Eclipse's Rich Client Platform, Part 1: Getting started

5
6 public class GooglePerspective implements IPerspectiveFactory {
7
8 public void createInitialLayout(IPageLayout layout) {
9
10 }
11 }

The createInitialLayout method found on lines 8 through 10 defines the initial
layout of all the views and editors within the perspective. For the time being, you
don't need to modify this method. You'll modify it in Part two of this series once you
define a view.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Eclipse's Rich Client Platform, Part 1: Getting started Page 19 of 30

Section 5. Defining the WorkbenchAdvisor and
Application classes

Introducing the WorkbenchAdvisor
The previous panels have focused on the various components that contribute to an
RCP application. The next series of panels focus on pulling everything together. One
of the core tasks in constructing an RCP application is to create a class that
implements the abstract class
org.eclipse.ui.application.WorkbenchAdvisor. The
WorkbenchAdvisor class is responsible for configuring the workbench that displays
when an RCP application executes.

The WorkbenchAdvisor class contains the following methods that provide
developers access to the lifecycle of the generic workbench:

° initialize -- This method is called first before any windows are displayed.
° preStartup -- This method is executed second, but is called before the first

window is opened. This method is useful to temporarily disable items during
startup or restore.

° postStartup -- This method is called third after the first window is opened and
is used to re-enable items temporarily disabled in the preStartup method.

° postRestore -- This method is called after the workbench and its windows have
been recreated from a previously-saved state.

° preShutdown --This method is called just after the event loop has terminated,
but before any windows have been closed.

° postShutdown --This is the final method that is called after the event loop has
terminated.

The WorkbenchAdvisor class contains the following methods that provide
developers access to the lifecycle of the workbench window:

° preWindowOpen -- This method is called as each window is opened.
° fillActionBars -- This method is called after the preWindowOpen method,

and it configures a window's action bars.
° postWindowRestore -- This method is called after a window has been

recreated from a previously-saved state.
° postWindowOpen -- This method is called after a window has been opened. This

method is useful to register any window listeners.
° preWindowShellClose -- This method is called when the user closes the

window's shell.

The WorkbenchAdvisor class contains the following methods that provide
developers access to the event loop of the workbench:

° eventLoopException -- This method is called to handle the exception of the
event loop crashing.

° eventLoopIdle -- This method is called when no more events need to be
processed.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 30 Eclipse's Rich Client Platform, Part 1: Getting started

Creating the WorkbenchAdvisor class
To create a WorkbenchAdvisor class, complete the following steps from within the
PDE:

1. Select File > New > Class from the menu bar to display the New Java Class
wizard.

2. Type GoogleWorkbenchAdvisor into the Name field.
3. Click on the Browse button to display the Superclass Selection dialog box.
4. Type org.eclipse.ui.application.WorkbenchAdvisor into the Choose a type field

and click OK.
5. Click the Finish button to create the new class.

The wizard generates the following source code:

1 package com.ibm.developerworks.google;
2
3 import org.eclipse.ui.application.WorkbenchAdvisor;
4
5
6 public class GoogleWorkbenchAdvisor extends WorkbenchAdvisor {
7
8 public String getInitialWindowPerspectiveId() {
9
10 return null;
11 }
12 }

You need to make a few minor modifications to this class before you try to execute
the RCP application within the PDE. First, you need to modify the
getInitialWindowPerspectiveId method on lines 7 through 9. This method
should return the identifier of the initial perspective for the new workbench window.
Since you defined the Google perspective in the previous section as
com.ibm.developerworks.GooglePerspective, this string will be returned to
the calling function. Second, you need to add a method called preWindowOpen.
This method allows you to set the workbench's window title and size. See the
modified class below:

package com.ibm.developerworks.google;

import org.eclipse.swt.graphics.Point;
import org.eclipse.ui.application.IWorkbenchWindowConfigurer;
import org.eclipse.ui.application.WorkbenchAdvisor;

public class GoogleWorkbenchAdvisor extends WorkbenchAdvisor {

public String getInitialWindowPerspectiveId() {
return "com.ibm.developerworks.google.GooglePerspective";

}

public void preWindowOpen(IWorkbenchWindowConfigurer configurer) {
super.preWindowOpen(configurer);
configurer.setTitle("Google");
configurer.setInitialSize(new Point(300, 300));

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Eclipse's Rich Client Platform, Part 1: Getting started Page 21 of 30

configurer.setShowMenuBar(false);
configurer.setShowStatusLine(false);
configurer.setShowCoolBar(false);

}}

Creating the Application class
Before executing the application, you need to create an Application class. Similar
to the main method within a Java class, this class is the main entry point for the RCP
application. This class implements the
org.eclipse.core.runtime.IPlatformRunnable interface as defined within
the plug-in manifest under the org.eclipse.core.runtime.applications
extension point.

To create an Application class, complete the following steps from within the PDE:

1. Select File > New > Class from the menu bar to display the New Java Class
wizard.

2. Type GoogleApplication into the Name field.
3. Click on the Add button to display the Implemented Interfaces Selection dialog

box.
4. Type org.eclipse.core.runtime.IPlatformRunnable into the Choose Interfaces

field and click OK.
5. Click the Finish button to create the new class.
6. Add the following run method to the generated class. For most RCP applications,

this run method will not need to be customized and can be re-used.
...

public Object run(Object args) throws Exception {
WorkbenchAdvisor workbenchAdvisor = new GoogleWorkbenchAdvisor();
Display display = PlatformUI.createDisplay();
int returnCode = PlatformUI.createAndRunWorkbench(display,

workbenchAdvisor);
if (returnCode == PlatformUI.RETURN_RESTART)

return IPlatformRunnable.EXIT_RESTART;
else

return IPlatformRunnable.EXIT_OK;
}

...

Launching the application with the PDE
To launch the application within the PDE, complete the following steps:

1. Select Run > Run... from the menu bar to display the Run dialog as Figure 9
shows.
Figure 9. The Run dialog

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 30 Eclipse's Rich Client Platform, Part 1: Getting started

2. Highlight Run-time Workbench within the Configurations field and click the New
button to display a new run-time workbench configuration as Figure 10 shows:
Figure 10. A new Run-time Workbench configuration

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Eclipse's Rich Client Platform, Part 1: Getting started Page 23 of 30

3. Type Google into the Name field.
4. Select Google.googleApplication from the Application Name field.
5. Click on the Plug-ins tab as Figure 11 shows:

Figure 11. The Plug-ins tab of the Run dialog

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 30 Eclipse's Rich Client Platform, Part 1: Getting started

6. Select the radio button Choose plug-ins and fragments to launch from the list.
7. Click the Deselect All button.
8. Check the Workspace Plug-ins option. This also selects the Google project.
9. Click the Add Required Plug-ins button. This action determines which plug-ins

are necessary to execute the application. You will use this list when you assemble
the stand-alone application.

10.Click the Apply button.
11.Click the Run button to execute the application. If everything is configured

properly, a window entitled "Google" should display as Figure 12 shows. Although
this window doesn't perform any function, it does demonstrate how you can use
the PDE to create a generic workbench.
Figure 12. The new Google window

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Eclipse's Rich Client Platform, Part 1: Getting started Page 25 of 30

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 26 of 30 Eclipse's Rich Client Platform, Part 1: Getting started

Section 6. Creating a stand-alone application

Exporting the application
So far you have focused on how to run an RCP application within the Eclipse IDE. In
this section, you'll focus on how to create a stand-alone application by completing the
following steps within the PDE:

1. Select File > Export... from the menu bar to display the Export dialog as Figure
13 shows:
Figure 13. The Export dialog

2. Select Deployable plug-ins and fragments from the list of export options.
3. Click Next to display the Export Plug-ins and Fragments page of the Export

wizard as Figure 14 shows:
Figure 14. Export Plug-ins and Fragments page of the Export wizard

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Eclipse's Rich Client Platform, Part 1: Getting started Page 27 of 30

4. Check the Google plug-in.
5. Select a directory structure under the Deploy as field.
6. Click the Browse button and choose an export location.
7. Click Finish to build the project.

Preparing the directory structure
To complete the stand-alone application, you need to copy some files from the
Eclipse IDE directory into Google's export directory. Unfortunately, Eclipse 3.0
doesn't provide a tool to copy all the necessary dependent plug-ins and JAR files into
the export directory, so you need to complete the following steps:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 28 of 30 Eclipse's Rich Client Platform, Part 1: Getting started

1. Copy startup.jar from the root directory of the Eclipse 3.0 IDE to the root of the
Google application's export directory.

2. Copy the following directories from the Eclipse 3.0 IDE plug-in directory to the
plugin directory of the Google application's export directory:
° org.eclipse.core.expressions_3.0.0
° org.eclipse.core.runtime_3.0.0
° org.eclipse.help_3.0.0
° org.eclipse.jface_3.0.0
° org.eclipse.osgi_3.0.0
° org.eclipse.swt.win32_3.0.0 (Windows only)
° org.eclipse.swt.gtk_3.0.0 (Linux only)
° org.eclipse.swt_3.0.0
° org.eclipse.ui.workbench_3.0.0
° org.eclipse.ui_3.0.0
° org.eclipse.update.configurator_3.0.0

Testing the application
To test the application, you need to create a launch script. Using your favorite text
editor, create a file entitled google.bat (Windows) or google.sh (Linux) with the
following content:

java -cp startup.jar org.eclipse.core.launcher.Main -application
com.ibm.developerworks.google.googleApplication

After you've completed this task, your export directory should have the following
structure:

- google.bat (Windows only)
- google.sh (Linux only)
- startup.jar
+ ----- plugins

+ ----- org.eclipse.core.expressions_3.0.0
+ ----- org.eclipse.core.runtime_3.0.0
+ ----- org.eclipse.help_3.0.0
+ ----- org.eclipse.jface_3.0.0
+ ----- org.eclipse.osgi.services_3.0.0
+ ----- org.eclipse.osgi.util_3.0.0
+ ----- org.eclipse.osgi_3.0.0
+ ----- org.eclipse.swt.win32_3.0.0 (Windows only)
+ ----- org.eclipse.swt.gtk_3.0.0 (Linux only)
+ ----- org.eclipse.swt_3.0.0
+ ----- org.eclipse.ui.workbench_3.0.0
+ ----- org.eclipse.ui_3.0.0
+ ----- org.eclipse.update.configurator_3.0.0

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Eclipse's Rich Client Platform, Part 1: Getting started Page 29 of 30

Section 7. Summary and resources

Summary
The RCP will extend and evolve as developers begin to understand and utilize it
within their applications. Although we have only barely developed the example
application, the companion source code and plug-in manifest demonstrate how to
construct a basic RCP application. While this first tutorial provided an overview of the
RCP, the next part of this series explores the inner-workings of the generic
workbench and the development of the Google RCP application.

Resources
° Download (part1-src.zip) the companion source code package for the sample

RCP application demonstrated in this tutorial.
° Download Eclipse 3.0 (http://www.eclipse.org/downloads/index.php) from the

Eclipse Foundation.
° Download Java 2 SDK, Standard Edition 1.4.2

(http://java.sun.com/j2se/1.4.2/download.html) from Sun Microsystems.
° Download Ant 1.6.1 (http://ant.apache.org/) or higher from the Apache Software

Foundation.
° Get an introduction to the core components of the Eclipse Platform from the

whitepaper, "Eclipse Technical Overview" (Eclipse Web site).
° Find more resources for developing plug-ins on the Eclipse Web site, including,

Platform Extension Points (Eclipse Web site).
° Find more resources for how to use the Standard Widget Toolkit and JFace on

developerWorks, including:
° Integrate ActiveX controls into SWT applications (developerWorks, June 2003)
° Developing JFace wizards (developerWorks, May 2003)
° Integrate ActiveX controls into SWT applications (developerWorks, June 2003)

° Find more resources for how to use Eclipse on developerWorks, including:
° Developing Eclipse plug-ins (developerWorks, December 2002)
° XML development with the Eclipse Platform (developerWorks, April 2003)

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

For more information about the Toot-O-Matic, visit
www-106.ibm.com/developerworks/xml/library/x-toot/ .

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 30 of 30 Eclipse's Rich Client Platform, Part 1: Getting started

part1-src.zip
http://www.eclipse.org/downloads/index.php
http://java.sun.com/j2se/1.4.2/download.html
http://ant.apache.org/
http://www.eclipse.org/documentation/html/plugins/org.eclipse.platform.doc.isv/doc/reference/extension-points/
http://www-106.ibm.com/developerworks/opensource/library/os-activex/
http://www-106.ibm.com/developerworks/library/os-ecjfw/
http://www-106.ibm.com/developerworks/opensource/library/os-activex/
http://www-106.ibm.com/developerworks/library/os-ecplug/
http://www-106.ibm.com/developerworks/library/os-ecxml/
http://www-106.ibm.com/developerworks/xml/library/x-toot/

Eclipse's Rich Client Platform, Part 2:
Extending the generic workbench

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of contents
If you're viewing this document online, you can click any of the topics below to link directly to that
section.

1. Before you start ... 2
2. Defining a view .. 4
3. Integrating menu bars and dialog boxes ... 15
4. Defining a wizard ... 17
5. Defining an action.. 21
6. Launching the application ... 25
7. Summary and resources .. 29

Eclipse's Rich Client Platform, Part 2: Extending the generic workbench Page 1 of 30

Section 1. Before you start

About this tutorial
The second of a two-part series, this tutorial explores Eclipse's Rich Client Platform
(RCP). The first part of the series, Eclipse's Rich Client Platform, Part 1: Getting
started, began with a review of the Eclipse project and the relevance of the RCP
within the marketplace. It discussed the Eclipse plug-in architecture and outlined the
necessary steps to implement an RCP application. After providing the necessary
background information, you began creating a project within the Eclipse 3.0 IDE. You
defined a plug-in manifest, were introduced to extensions and extension points, and
created a basic perspective. Using these components, you created some additional
supporting Java classes and launched a stand-alone RCP application.

Part 2 of this series leverages the discussion from Part 1 and explores how you can
use other Eclipse user-interface components such as views, actions, and wizards to
assemble a complete application. In this tutorial, you'll create a front end for the
Google API that will give you the ability to query and display search results from
Google's extensive catalog of Web sites. Having an application that demonstrates
some of these technologies in action will provide you with an understanding of the
RCP platform.

You should understand how to navigate Eclipse 3.0 and have a working knowledge
of Java to follow this tutorial. You do not need a background in Eclipse plug-in
development or an understanding of technologies such as the Standard Widget
Toolkit (SWT) and JFace. Part 1 provided a brief introduction to each of these
complementary technologies. This tutorial explores the code and supporting files so
you can grasp how to construct an RCP application.

Tools
While not a prerequisite, you'll find this tutorial easier to follow if you download,
install, and configure Eclipse 3.0, a 1.4 Java Virtual Machine, and Apache Ant. If you
don't have these tools installed, please reference, download, and install the following
resources:

° Eclipse 3.0 is available at: http://www.eclipse.org/downloads/index.php
° Java 2 Standard Edition, Software Development Kit (SDK) is available at:

http://java.sun.com/j2se/1.4.2/download.html
° Apache Ant 1.6.1 is available at: http://ant.apache.org/

About the author
Jeff Gunther, a Studio B (http://www.studiob.com/) author, is the General Manager
and founder of Intalgent Technologies, an emerging provider of software products
and solutions utilizing the Java 2 Enterprise Edition and Lotus Notes/Domino
platforms. Jeff is an application and infrastructure architect with experience in
architecting, designing, developing, deploying, and maintaining complex software
systems. His diverse experience includes full lifecycle development of software

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 30 Eclipse's Rich Client Platform, Part 2: Extending the generic workbench

http://www.ibm.com/developerworks/edu/os-dw-os-eccli1-i.html
http://www.ibm.com/developerworks/edu/os-dw-os-eccli1-i.html
http://www.ibm.com/developerworks/edu/os-dw-os-eccli1-i.html
http://www.eclipse.org/downloads/index.php
http://java.sun.com/j2se/1.4.2/download.html
http://ant.apache.org/
http://www.studiob.com/

running on multiple platforms, from Web servers to embedded devices. You can
contact him at: jeff.gunther@intalgent.com.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Eclipse's Rich Client Platform, Part 2: Extending the generic workbench Page 3 of 30

mailto:jeff.gunther@intalgent.com

Section 2. Defining a view

Overview of views
Views within the Eclipse workbench are visual containers that allow users to display
or navigate resources of a particular type. As you begin creating views within your
own RCP application, remember to review the view's purpose before starting
development. Since a view's responsibility is to display data from your domain model,
group similar types of objects into the view. For example, most users of the Eclipse
IDE make extensive use of the tasks view within the Java perspective. This view
displays types of auto-generated errors, warnings, or information associated with a
resource that the developer needs to review and resolve. This approach minimizes
the need for the user to toggle between views to accomplish a particular task. The
number of views that any application has is largely dependent on the application's
size and complexity. The example Google application developed in this tutorial has
two views -- one for searching and one for displaying the Web page from the search
results, both of which you'll create in this section.

Defining an org.eclipse.ui.views extension
Similar to other components within Eclipse, to create a new view, you must define a
new extension within the project's plug-in manifest. You define views using the
org.eclipse.ui.perspectives extension point. Using the plugin.xml tab of the
plug-in manifest editor within the Google project, add the following content to begin
the process of creating the views.

...
<extension point="org.eclipse.ui.views">

<category
id="com.ibm.developerworks.google.views"
name="Google">

</category>

<view
id="com.ibm.developerworks.google.views.SearchView"
name="Search"
category="com.ibm.developerworks.google.views"
class="com.ibm.developerworks.google.views.SearchView"
icon="icons/google.gif">

</view>

<view
id="com.ibm.developerworks.google.views.BrowserView"
name="Browser"
category="com.ibm.developerworks.google.views"
class="com.ibm.developerworks.google.views.BrowserView"
icon="icons/google.gif">

</view>

</extension>
...

The SearchView allows users to search Google and display the search results in a

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 30 Eclipse's Rich Client Platform, Part 2: Extending the generic workbench

table. The BrowserView contains an SWT browser control and displays a particular
URL based on the user's action within the search results table.

Next, you'll look at the view extension's elements and attributes in more detail.

Stepping through the org.eclipse.ui.views
extension point
Use the <extension>, <category>, and <view> elements to define the view
extension point. A category is used within the Show View Dialog to group similar
views. Each view can appear under multiple categories.

The <category> element has the following attributes:

° id -- This attribute defines a unique identifier for the category.
° name -- This attribute defines a name for this category, and the workbench uses it

to represent this category.
° parentCategory -- This optional attribute defines a list of categories separated

by '/'. This element creates category hierarchies.

The <view> element has the following attributes:

° id -- This attribute defines a unique identifier for the view.
° name -- This attribute defines a name for this view, and the workbench uses it to

represent this view.
° category -- This optional attribute defines the categories identifiers. Each

category is separated by a '/' and must exist within the plug-in manifest prior to
being referenced by the <view> element.

° class -- This attribute contains the fully-qualified name of the class that
implements the org.eclipse.ui.IViewPart interface.

° icon -- This optional attribute contains a relative name of the icon associated with
the view.

° fastViewWidthRatio -- This optional attribute contains the percentage of the
width of the workbench that the view will take up. This attribute must be a floating
point value between 0.05 and 0.95.

° allowMultiple -- This optional attribute indicates whether this view allows for
the creation of multiple instances within the workbench.

Creating the SearchView class
To create the SearchView class within the Google project, complete the following
steps:

1. Select File > New > Class from the menu bar to display the New Java Class
wizard.
Figure 1. New Java Class wizard

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Eclipse's Rich Client Platform, Part 2: Extending the generic workbench Page 5 of 30

2. Type com.ibm.developerworks.google.views into the Package field.
3. Type SearchView into the Name field.
4. Click on the Browse button to display the Superclass Selection dialog box.
5. Type org.eclipse.ui.part.ViewPart into the Choose a Type field and click OK.
6. Click the Finish button to create the new class.

Implementing the SearchView class
After the class is created, the createPartControl and setFocus methods must
be implemented. The createPartControl method is responsible for creating the
view's user-interface controls. In this case, an SWT GridLayout layout is used to

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 30 Eclipse's Rich Client Platform, Part 2: Extending the generic workbench

arrange the SWT label, SWT text, SWT button, and an SWT table on the view's
composite. For more information about SWT's various layouts or how to use SWT
user-interface components, please refer to the Resources on page 29 at the end of
this tutorial.

The code within the createPartControl method renders the user interface Figure
2 shows.

...
public void createPartControl(Composite parent)
{

GridLayout gridLayout = new GridLayout();
gridLayout.numColumns = 3;
gridLayout.marginHeight = 5;
gridLayout.marginWidth = 5;

parent.setLayout(gridLayout);

Label searchLabel = new Label(parent, SWT.NONE);
searchLabel.setText("Search:");

searchText = new Text(parent, SWT.BORDER);
searchText.setLayoutData(new GridData(GridData.GRAB_HORIZONTAL

| GridData.HORIZONTAL_ALIGN_FILL));

Button searchButton = new Button(parent, SWT.PUSH);
searchButton.setText(" Search ");

...
GridData gridData = new GridData();
gridData.verticalAlignment = GridData.FILL;
gridData.horizontalSpan = 3;
gridData.grabExcessHorizontalSpace = true;
gridData.grabExcessVerticalSpace = true;
gridData.horizontalAlignment = GridData.FILL;

tableViewer = new TableViewer(parent, SWT.FULL_SELECTION | SWT.BORDER);
tableViewer.setLabelProvider(new SearchViewLabelProvider());
tableViewer.setContentProvider(new ViewContentProvider());
tableViewer.setInput(model);
tableViewer.getControl().setLayoutData(gridData);
tableViewer.addDoubleClickListener(this);

Table table = tableViewer.getTable();
table.setHeaderVisible(true);
table.setLinesVisible(true);

TableColumn titleColumn = new TableColumn(table, SWT.NONE);
titleColumn.setText("Title");
titleColumn.setWidth(250);

TableColumn urlColumn = new TableColumn(table, SWT.NONE);
urlColumn.setText("URL");
urlColumn.setWidth(200);

...

Figure 2. Search view of the Google application

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Eclipse's Rich Client Platform, Part 2: Extending the generic workbench Page 7 of 30

Implementing the SearchView class, continued
In addition to the createPartControl method, the setFocus method must be
implemented. In this case the focus defaults to an SWT Text field that allows a user
to input search criteria for Google. This method is called upon the view being
rendered within the workbench.

...
public void setFocus()
{

searchText.setFocus();
}

...

Once a user double clicks on a row within the search results table, the Web site loads
within another view that contains an SWT browser control. This is accomplished by
having the SearchView implement the IDoubleClickListener interface. The
IDoubleClickListener interface requires a doubleClick method to be added
to the SearchView.

...
public void doubleClick(DoubleClickEvent event)
{

if (!tableViewer.getSelection().isEmpty())
{

IStructuredSelection ss = (IStructuredSelection) tableViewer
.getSelection();

GoogleSearchResultElement element = (GoogleSearchResultElement) ss
.getFirstElement();

BrowserView.browser.setUrl(element.getURL());
}

}
...

Find the complete source code for the SearchView class below:

package com.ibm.developerworks.google.views;

import org.eclipse.jface.dialogs.MessageDialog;

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 30 Eclipse's Rich Client Platform, Part 2: Extending the generic workbench

import org.eclipse.jface.viewers.DoubleClickEvent;
import org.eclipse.jface.viewers.IDoubleClickListener;
import org.eclipse.jface.viewers.IStructuredSelection;
import org.eclipse.jface.viewers.TableViewer;
import org.eclipse.swt.SWT;
import org.eclipse.swt.events.SelectionEvent;
import org.eclipse.swt.events.SelectionListener;
import org.eclipse.swt.layout.GridData;
import org.eclipse.swt.layout.GridLayout;
import org.eclipse.swt.widgets.Button;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Label;
import org.eclipse.swt.widgets.Table;
import org.eclipse.swt.widgets.TableColumn;
import org.eclipse.swt.widgets.Text;
import org.eclipse.ui.internal.dialogs.ViewContentProvider;
import org.eclipse.ui.part.ViewPart;

import com.google.soap.search.GoogleSearch;
import com.google.soap.search.GoogleSearchFault;
import com.google.soap.search.GoogleSearchResult;
import com.google. soap.search.GoogleSearchResultElement;
import com.ibm.developerworks.google.GoogleApplication;

public class SearchView extends ViewPart implements IDoubleClickListener
{

public static final String ID = "com.ibm.developerworks.google.views.SearchView";

private TableViewer tableViewer;

private Text searchText;

private GoogleSearchResultElement model;

public void createPartControl(Composite parent)
{

GridLayout gridLayout = new GridLayout();
gridLayout.numColumns = 3;
gridLayout.marginHeight = 5;
gridLayout.marginWidth = 5;

parent.setLayout(gridLayout);

Label searchLabel = new Label(parent, SWT.NONE);
searchLabel.setText("Search:");

searchText = new Text(parent, SWT.BORDER);
searchText.setLayoutData(new GridData(GridData.GRAB_HORIZONTAL

| GridData.HORIZONTAL_ALIGN_FILL));

Button searchButton = new Button(parent, SWT.PUSH);
searchButton.setText(" Search ");
searchButton.addSelectionListener(new SelectionListener()
{

public void widgetSelected(SelectionEvent e)
{

GoogleSearch search = new GoogleSearch();
search.setKey(GoogleApplication.LICENSE_KEY);
search.setQueryString(searchText.getText());
try
{

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Eclipse's Rich Client Platform, Part 2: Extending the generic workbench Page 9 of 30

GoogleSearchResult result = search.doSearch();

tableViewer.setInput(model);
tableViewer.add(result.getResultElements());

} catch (GoogleSearchFault ex)
{

MessageDialog.openWarning(e.display.getActiveShell(),
"Google Error", ex.getMessage());

}

}

public void widgetDefaultSelected(SelectionEvent e)

}
});

GridData gridData = new GridData();
gridData.verticalAlignment = GridData.FILL;
gridData.horizontalSpan = 3;
gridData.grabExcessHorizontalSpace = true;
gridData.grabExcessVerticalSpace = true;
gridData.horizontalAlignment = GridData.FILL;

tableViewer = new TableViewer(parent, SWT.FULL_SELECTION | SWT.BORDER);
tableViewer.setLabelProvider(new SearchViewLabelProvider());
tableViewer.setContentProvider(new ViewContentProvider());
tableViewer.setInput(model);
tableViewer.getControl().setLayoutData(gridData);
tableViewer.addDoubleClickListener(this);

Table table = tableViewer.getTable();
table.setHeaderVisible(true);
table.setLinesVisible(true);

TableColumn titleColumn = new TableColumn(table, SWT.NONE);
titleColumn.setText("Title");
titleColumn.setWidth(250);

TableColumn urlColumn = new TableColumn(table, SWT.NONE);
urlColumn.setText("URL");
urlColumn.setWidth(200);

}

public void setFocus()
{

searchText.setFocus();
}

public void doubleClick(DoubleClickEvent event)
{

if (!tableViewer.getSelection().isEmpty())
{

IStructuredSelection ss = (IStructuredSelection) tableViewer
.getSelection();

GoogleSearchResultElement element = (GoogleSearchResultElement) ss
.getFirstElement();

BrowserView.browser.setUrl(element.getURL());
}

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 30 Eclipse's Rich Client Platform, Part 2: Extending the generic workbench

}
}

Creating the SearchViewLabelProvider class
In the source code on the previous panel, the TableViewer object uses a class
called SearchViewLabelProvider. In this instance, a label provider sets the
column's text for each row of the table. To create the SearchViewLabelProvider
class for the SearchView class within the Google project, complete the following
steps:

1. Select File > New > Class from the menu bar to display the New Java Class
wizard.

2. Type com.ibm.developerworks.google.views into the Package field.
3. Type SearchViewLabelProvider into the Name field.
4. Click on the Browse button to display the Superclass Selection dialog box.
5. Type org.eclipse.jface.viewers.LabelProvider into the Choose a Type field and

click OK.
6. Click on the Add button to display the Implemented Interfaces Selection dialog

box.
7. Type org.eclipse.jface.viewers.ITableLabelProvider into the Choose an

interface field and click OK.
8. Click the Finish button to create the new class.

Implementing the SearchViewLabelProvider class
The ITableLabelProvider interface requires that the getColumnImage and
getColumnText methods be implemented within the class. Since the results table
does not include any images, the getColumnImage method simply returns null. The
getColumnText uses the GoogleSearchResultElement class provided by the
Google API to set the first and second columns of the SWT table. The first column
contains the title of the search result, and the second column contains the search
result's URL.

package com.ibm.developerworks.google.views;

...

public class SearchViewLabelProvider extends LabelProvider implements
ITableLabelProvider

{

public Image getColumnImage(Object element, int columnIndex)
{

return null;
}

public String getColumnText(Object element, int columnIndex)
{

switch (columnIndex)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Eclipse's Rich Client Platform, Part 2: Extending the generic workbench Page 11 of 30

{
case 0:

return ((GoogleSearchResultElement) element).getTitle();
case 1:

return ((GoogleSearchResultElement) element).getURL();

}
return "";

}

}

Creating the BrowserView class
Now you need to create a view to display the URL that the user selects within the
search result table. To create the BrowserView class within the Google project,
complete the following steps:

1. Select File > New > Class from the menu bar to display the New Java Class
wizard.

2. Type com.ibm.developerworks.google.views into the Package field.
3. Type BrowserView into the Name field.
4. Click on the Browse button to display the Superclass Selection dialog box.
5. Type org.eclipse.ui.part.ViewPart into the Choose a Type field and click OK.
6. Click the Finish button to create the new class.

Implementing the BrowserView class
As for the SearchView class, you must implement the createPartControl and
setFocus methods in the BrowserView class. In this case, an SWT browser
control is embedded within the view. This control displays the Web page that the user
selects within the search results table.

package com.ibm.developerworks.google.views;

import org.eclipse.swt.SWT;
import org.eclipse.swt.browser.Browser;
import org.eclipse.swt.layout.GridData;
import org.eclipse.swt.layout.GridLayout;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.ui.part.ViewPart;

public class BrowserView extends ViewPart
{

public static final String ID = "com.ibm.developerworks.google.views.BrowserView";

public static Browser browser;

public void createPartControl(Composite parent)
{

GridLayout gridLayout = new GridLayout();
gridLayout.numColumns = 1;
gridLayout.marginHeight = 5;

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 30 Eclipse's Rich Client Platform, Part 2: Extending the generic workbench

gridLayout.marginWidth = 5;
parent.setLayout(gridLayout);

browser = new Browser(parent, SWT.NONE);

browser.setLayoutData(new GridData(GridData.GRAB_HORIZONTAL
| GridData.GRAB_VERTICAL | GridData.FILL_HORIZONTAL
| GridData.FILL_VERTICAL));

browser.setUrl("about:");

}

public void setFocus()
{

browser.setFocus();

}
}

Integrating the SearchView and BrowserView into a
perspective
With the two views and supporting classes defined for your Google application, you
need to integrate these components into the existing perspective you created in Part
1. Open the GooglePerspective class and modify the createInitialLayout
method.

Find the complete source code for the GooglePerspective class below:

package com.ibm.developerworks.google;

import org.eclipse.ui.IPageLayout;
import org.eclipse.ui.IPerspectiveFactory;

import com.ibm.developerworks.google.views.BrowserView;
import com.ibm.developerworks.google.views.SearchView;

public class GooglePerspective implements IPerspectiveFactory
{

public static final String ID = "com.ibm.developerworks.google.GooglePerspective";

public void createInitialLayout(IPageLayout layout)
{

layout.setEditorAreaVisible(false);
layout.addView(SearchView.ID, IPageLayout.BOTTOM, new Float(0.60)

.floatValue(), IPageLayout.ID_EDITOR_AREA);
layout.addView(BrowserView.ID, IPageLayout.TOP, new Float(0.40)

.floatValue(), IPageLayout.ID_EDITOR_AREA);
}

}

As Figure 3 shows, the last two lines within the createInitialLayout open the
SearchView and BrowserView when the perspective is rendered. The addView
method contains four parameters:

1. The first parameter contains the unique identifier for the view.
2. The second parameter defines the relationship to the workbench. Possible options

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Eclipse's Rich Client Platform, Part 2: Extending the generic workbench Page 13 of 30

include Top, Bottom, Left, and Right.
3. The third parameter defines a ratio of how to divide the available space within the

workbench. This parameter is a float value between 0.05 and 0.95
4. The final parameter contains the unique identifier reference for where the view

should be displayed. In this case, the editor area is used.

Figure 3. The Search and Browser views of the Google application

The next section focuses on how to add menu bars, dialogs, action, and wizards to
an RCP application.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 30 Eclipse's Rich Client Platform, Part 2: Extending the generic workbench

Section 3. Integrating menu bars and dialog boxes

Adding menu bars to a perspective
Sometimes you'll want to add actions to an RCP application by creating a menu bar
within the main window. To add new items to the menu bar, you need to override the
fillActionBars method within the WorkbenchAdvisor.

...
public void fillActionBars(IWorkbenchWindow window,

IActionBarConfigurer configurer, int flags)
{

IMenuManager menuBar = configurer.getMenuManager();

MenuManager fileMenu = new MenuManager("File",
IWorkbenchActionConstants.M_FILE);

fileMenu.add(new GroupMarker(IWorkbenchActionConstants.FILE_START));
fileMenu.add(new GroupMarker(IWorkbenchActionConstants.MB_ADDITIONS));
fileMenu.add(ActionFactory.QUIT.create(window));
fileMenu.add(new GroupMarker(IWorkbenchActionConstants.FILE_END));

menuBar.add(fileMenu);
}

...

In the source code above, the MenuManager class adds a fileMenu to the
workbench. Figure 4 shows the menu bar in action within the Google application.

Figure 4. Menu bars in the WorkbenchAdvisor class

In addition to menu bars, the JFace toolkit provides some predefined dialog boxes
that can enhance a user's experience with an RCP application. The next panel
reviews the various dialog types the JFace package provides.

Various types of dialog boxes
The JFace toolkit includes a variety of dialogs that can display messages to your
application's users. As Figure 5 demonstrates, the SearchView class uses the
MessageDialog class to display an error to users if they don't provide a Google API

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Eclipse's Rich Client Platform, Part 2: Extending the generic workbench Page 15 of 30

license key before executing a query.

Figure 5. Error message if the license key is not provided

In addition to the MessageDialog, the JFace package provides three other dialog
types:

1. ErrorDialog uses an IStatus object and displays information about a particular
error.

2. InputDialog allows the user to enter text into the dialog box.
3. ProgressMonitorDialog shows the execution progress of a process to the

user.

The next section describes how you can add a wizard to your RCP application to
gather data.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 30 Eclipse's Rich Client Platform, Part 2: Extending the generic workbench

Section 4. Defining a wizard

Overview of wizards
The JFace toolkit includes a powerful set of user-interface components that you can
easily integrate into an RCP application. An interesting component of this toolkit is
the support for wizards. A JFace wizard, coupled with other user-interface
components within the Standard Widget Toolkit (SWT), provides a flexible
mechanism to systematically gather user input and perform input validation.

Before reviewing the code and implementation details of how to create a wizard,
review the purpose for a wizard within your Google application. To query the Google
API, you must sign up for an account. Once your account has been activated, you'll
be provided a license key. Google currently allows each account the ability to
execute 1000 queries per day. Since you need to supply a license key as a
parameter within the GoogleSearch object, you need a mechanism to gather the
license key from the user.

As Figure 6 demonstrates, the application contains a JFace wizard consisting of one
page that requests the license key.

Figure 6. The License Key wizard within the Google application

For more information on how to create an account to access the Google API, please
refer to Resources on page29 .

Creating a LicenseKeyWizard class
To create a basic wizard, create a class that extends
org.eclipse.jface.wizard.Wizard. In the Google application, a wizard will be

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Eclipse's Rich Client Platform, Part 2: Extending the generic workbench Page 17 of 30

used to gather the user's Google API license key. To create the
LicenseKeyWizard class within the Google project, complete the following steps:

1. Select File > New > Class from the menu bar to display the New Java Class
wizard.

2. Type com.ibm.developerworks.google.wizards into the Package field.
3. Type LicenseKeyWizard into the Name field.
4. Click on the Browse button to display the Superclass Selection dialog box.
5. Type org.eclipse.jface.wizard.Wizard into the Choose a Type field and click OK.
6. Click the Finish button to create the new class.

Implementing the LicenseKeyWizard class
After creating the LicenseKeyWizard class, you need to override the addPages
and performFinish methods. The addPages method adds pages to a wizard
before it displays to the end user. The performFinish method executes when the
user presses the Finish button within the wizard. The LicenseKeyWizard gathers
the license key data and populates it to a static String variable in the class.

Find the complete source code for the LicenseKeyWizard class below:

package com.ibm.developerworks.google.wizards;

import org.eclipse.jface.wizard.Wizard;

public class LicenseKeyWizard extends Wizard
{

private static String licenseKey;
private LicenseKeyWizardPage page;

public LicenseKeyWizard()
{

super();
this.setWindowTitle("License Key");

}

public void addPages()
{

page = new LicenseKeyWizardPage("licenseKey");
addPage(page);

}
public boolean performFinish()
{

if(page.getLicenseKeyText().getText().equalsIgnoreCase(""))
{

page.setErrorMessage("You must provide a license key.");
page.setPageComplete(false);
return false;

}
else
{

licenseKey = page.getLicenseKeyText().getText();
return true;

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 30 Eclipse's Rich Client Platform, Part 2: Extending the generic workbench

}

}

public static String getLicenseKey()
{

return licenseKey;
}

public static void setLicenseKey(String licenseKey)
{

LicenseKeyWizard.licenseKey = licenseKey;
}

}

Creating a LicenseKeyWizardPage class
In addition to the wizard class, each wizard must have at least one page that extends
org.eclipse.jface.wizard.WizardPage. To create the
LicenseKeyWizardPage class within the Google project, complete the following
steps:

1. Select File > New > Class from the menu bar to display the New Java Class
wizard.

2. Type com.ibm.developerworks.google.wizards into the Package field.
3. Type LicenseKeyWizardPage into the Name field.
4. Click on the Browse button to display the Superclass Selection dialog box.
5. Type org.eclipse.jface.wizard.WizardPage into the Choose a Type field and

click OK.
6. Click the Finish button to create the new class.

Implementing the LicenseKeyWizardPage class
Without a class that implements a WizardPage, the LicenseKeyWizard wouldn't
have any behavior. You can think of a wizard as a stack of cards, each with its own
layout and design. Each WizardPage is responsible for the layout and behavior of a
single page or card within a wizard. To create a WizardPage, you need to subclass
the WizardPage base implementation and implement the createControl method
to create the specific user-interface controls.

Find the complete source code for the LicenseKeyWizardPage class below:

package com.ibm.developerworks.google.wizards;

import org.eclipse.jface.wizard.WizardPage;
import org.eclipse.swt.SWT;
import org.eclipse.swt.layout.GridData;
import org.eclipse.swt.layout.GridLayout;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Label;
import org.eclipse.swt.widgets.Text;

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Eclipse's Rich Client Platform, Part 2: Extending the generic workbench Page 19 of 30

public class LicenseKeyWizardPage extends WizardPage
{

private Text licenseKeyText;

protected LicenseKeyWizardPage(String pageName)
{

super(pageName);
setTitle("License Key");
setDescription("Define your Google API License Key");

}

public void createControl(Composite parent)
{

GridLayout pageLayout = new GridLayout();
pageLayout.numColumns = 2;
parent.setLayout(pageLayout);
parent.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

Label label = new Label(parent, SWT.NONE);
label.setText("License Key:");

licenseKeyText = new Text(parent, SWT.BORDER);
licenseKeyText.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));

setControl(parent);
}

public Text getLicenseKeyText()
{

return licenseKeyText;
}

public void setLicenseKeyText(Text licenseKeyText)
{

this.licenseKeyText = licenseKeyText;
}

}

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 30 Eclipse's Rich Client Platform, Part 2: Extending the generic workbench

Section 5. Defining an action

Overview of actions
Actions within the Eclipse workbench are commands that the user of an application
triggers. In general, actions fall into three distinct categories: buttons, items within the
tool bar, or items within the menu bar. For example, when you select File > New >
Class from the menu bar, you're executing an action that opens the New Java Class
wizard. When you execute an action within the workbench, the action's run method
performs its particular function within the application. In addition to an action's class,
an action can have other properties that control how the action is rendered within the
workbench. These properties include a text label, mouse over tool tip, and an icon.
This tutorial's example Google application has two actions -- one that's used to exit
the application and one that allows users to provide their Google API license key by
clicking a button located on the Search view.

This section explores how to define actions with an extension point within the plug-in
manifest. Specifically, it covers how to add an action to the pull-down menu of the
Search view.

Defining the org.eclipse.ui.viewActions
extension point
To add a new action to a view, you must define a new extension within the project's
plug-in manifest. View actions are defined using the
org.eclipse.ui.viewActions extension point. Each view has a pull-down menu
that activates when you click on the top right triangle button. Using the plugin.xml tab
of the plug-in manifest editor within the Google project, add the following content to
begin the process of creating a view action:

...
<extension point="org.eclipse.ui.viewActions">

<viewContribution
id="com.ibm.developerworks.google.views.contribution"
targetID="com.ibm.developerworks.google.views.SearchView">

<action
id="com.ibm.developerworks.google.actions.LicenseKeyAction"
label="License Key"
toolbarPath="additions"
style="push"
state="false"
tooltip="Google License Key"

class="com.ibm.developerworks.google.actions.LicenseKeyAction" />

</viewContribution>

</extension>
...

The LicenseKey view action allows users to set the license key that will be used to
query Google's API. The next few panels describe the

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Eclipse's Rich Client Platform, Part 2: Extending the generic workbench Page 21 of 30

org.eclipse.ui.viewActions extension point and the steps necessary to
create an Action class.

Stepping through the org.eclipse.ui.viewActions
extension point
Beginning with the <extension> element, a simple
org.eclipse.ui.viewActions extension contains a <viewContribution>
and <action> element.

A <viewContribution> defines a group of view actions and menus. This element
has the following attributes:

1. id -- This attribute defines a unique identifier for the view contribution.
2. targetID -- This attribute defines a registered view that is the target of the

contribution.

The <action> element has the following attributes:

° id -- This attribute defines a unique identifier for the action.
° label -- This attribute defines a name for this action and, the workbench uses it

to represent this action.
° menubarPath -- This optional attribute contains a slash-delimited path ('/') used

to specify the location of this action in the pull-down menu.
° toolbarPath -- This optional attribute contains a named group within the toolbar

of the target view. If this attribute is omitted, the action will not appear in the view's
toolbar.

° icon -- This optional attribute contains the relative path of an icon used to visually
represent the action within the view.

° disableIcon -- This optional attribute contains the relative path of an icon used
to visually represent the action when it's disabled.

° hoverIcon -- This optional attribute contains the relative path of an icon used to
visually represent the action when the mouse pointer is hovering over the action.

° tooltip -- This optional attribute defines the text for the action's tool tip.
° helpContextId -- This optional attribute defines a unique identifier indicating

the action's help context.
° style -- This optional attribute defines the user-interface style type for the action.

Options include push, radio, or toggle.
° state -- When the style attribute is toggled, this optional attribute defines the

initial state of the action.
° class -- This attribute contains the fully qualified name of the class that

implements the org.eclipse.ui.IViewActionDelegate interface.

Creating the LicenseKeyAction class
To create the LicenseKeyAction class for the SearchView class, complete the

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 30 Eclipse's Rich Client Platform, Part 2: Extending the generic workbench

following steps within the Google project:

1. Select File > New > Class from the menu bar to display the New Java Class
wizard.

2. Type com.ibm.developerworks.google.actions into the Package field.
3. Type LicenseKeyAction into the Name field.
4. Click on the Add button to display the Implemented Interfaces Selection dialog

box.
5. Type org.eclipse.ui.IViewActionDelegate into the Choose an interface field and

click OK.
6. Click the Finish button to create the new class.

Implementing the LicenseKeyAction class
When an action is invoked, the action's run method executes. In the Google
application, the LicenseKeyAction class launches a wizard to collect the user's
Google API license key. In this case, this action is located in the upper-right corner of
the search view.

Find the source code for the LicenseKeyAction class below:

package com.ibm.developerworks.google.actions;

import org.eclipse.jface.action.IAction;
import org.eclipse.jface.viewers.ISelection;
import org.eclipse.jface.wizard.WizardDialog;
import org.eclipse.ui.IViewActionDelegate;
import org.eclipse.ui.IViewPart;

import com.ibm.developerworks.google.views.SearchView;
import com.ibm.developerworks.google.wizards.LicenseKeyWizard;

public class LicenseKeyAction implements IViewActionDelegate
{

private SearchView searchView;

public void init(IViewPart view)
{

this.searchView = (SearchView) view;
}

public void run(IAction action)
{

LicenseKeyWizard wizard = new LicenseKeyWizard();
WizardDialog dialog = new WizardDialog(searchView.getViewSite()

.getShell(), wizard);
dialog.open();

}

public void selectionChanged(IAction action, ISelection selection)
{

}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Eclipse's Rich Client Platform, Part 2: Extending the generic workbench Page 23 of 30

}

Before you run the Google application, verify that the project builds successfully and
that you've received a license key to use Google's API.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 24 of 30 Eclipse's Rich Client Platform, Part 2: Extending the generic workbench

Section 6. Launching the application

Exporting the application
To create a stand-alone version of the Google application, complete the following
steps within the Plug-in Development Environment:

1. Select File > Export from the menu bar to display the Export dialog.
Figure 7. The Export dialog

2. Select Deployable plug-ins and fragments from the list of export options.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Eclipse's Rich Client Platform, Part 2: Extending the generic workbench Page 25 of 30

3. Click Next to display the Export Plug-ins and Fragments page of the Export
wizard.
Figure 8. Export Plug-ins and Fragments page of the Export wizard

4. Verify that the com.ibm.developerworks.google plug-in is checked.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 26 of 30 Eclipse's Rich Client Platform, Part 2: Extending the generic workbench

5. Select a directory structure under the Deploy as field.
6. Click the Browse button and choose an export location.
7. Click Finish to build the project.

Preparing the directory structure
To complete the stand-alone application, you need to copy some files from the
Eclipse IDE directory into Google's export directory. Unfortunately, Eclipse 3.0
doesn't provide a tool to copy all the necessary dependent plug-ins and JAR files into
the export directory.

Complete the following steps to prepare the directory structure:

1. Copy startup.jar from the root directory of the Eclipse 3.0 IDE to the root of the
Google application's export directory.

2. Copy the following directories from the Eclipse 3.0 IDE plugin directory to the
plugin directory of the Google application's export directory:

org.eclipse.core.expressions_3.0.0
org.eclipse.core.runtime_3.0.0
org.eclipse.help_3.0.0
org.eclipse.jface_3.0.0
org.eclipse.osgi.services_3.0.0
org.eclipse.osgi.util_3.0.0
org.eclipse.osgi_3.0.0
org.eclipse.swt.win32_3.0.0 (Windows only)
org.eclipse.swt.gtk_3.0.0 (Linux only)
org.eclipse.swt_3.0.0
org.eclipse.ui.workbench_3.0.0
org.eclipse.ui_3.0.0
org.eclipse.update.configurator_3.0.0

Testing and executing the application
After you've completed the task of preparing the directory, your export directory
should have the following structure:

- google.bat (Windows only)
- google.sh (Linux only)
- startup.jar
+ ----- plugins

+ ----- org.eclipse.core.expressions_3.0
+ ----- org.eclipse.core.runtime_3.0.0
+ ----- org.eclipse.help_3.0.0
+ ----- org.eclipse.jface_3.0.0
+ ----- org.eclipse.osgi.services_3.0.0
+ ----- org.eclipse.osgi.util_3.0.0
+ ----- org.eclipse.osgi_3.0.0
+ ----- org.eclipse.swt.win32_3.0.0 (Windows only)
+ ----- org.eclipse.swt.gtk_3.0.0 (Linux only)
+ ----- org.eclipse.swt_3.0.0

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Eclipse's Rich Client Platform, Part 2: Extending the generic workbench Page 27 of 30

+ ----- org.eclipse.ui.workbench_3.0.0
+ ----- org.eclipse.ui_3.0.0
+ ----- org.eclipse.update.configurator_3.0.0

To test the application, you need to create a launch script. Using your favorite text
editor, create a file named google.bat (Windows) or google.sh (Linux) with the
following content:

java -cp startup.jar org.eclipse.core.launcher.Main
-application com.ibm.developerworks.google.GoogleApplication

With all the classes created, the plug-in manifest defined, and all of the necessary
dependencies in place, you can launch the Google application and perform a search.
Figure 9 illustrates how you can use the Google API to search for the term "eclipse"
and how the Eclipse project Web site is displayed.

Figure 9. Google RCP application with search results

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 28 of 30 Eclipse's Rich Client Platform, Part 2: Extending the generic workbench

Section 7. Summary and resources

Summary
As the Eclipse development team begins to establish the RCP within the
development landscape, it's going to be exciting to see how the platform's strategy
and technology evolves. Although the RCP concept is very new, the 3.0 release of
Eclipse delivers developers a framework they can start using today. The example
Google application used in this tutorial demonstrates the generic workbench and
explores how you can integrate various user-interface elements to create an elegant,
cross-platform solution.

This series presented the following topics:

° An introduction to the core components that can make up an RCP application
including Perspectives, Views, Actions, and Wizards.

° An exploration of how to develop an RCP through the use of extensions.
° A sample RCP application that you can use to query and display search results

from Google.

Resources
° Download (part2-src.zip) the companion source code package for the sample

RCP application demonstrated in this tutorial.
° Download Eclipse 3.0 (http://www.eclipse.org/downloads/index.php) from the

Eclipse Foundation.
° Download Java 2 SDK, Standard Edition 1.4.2

(http://java.sun.com/j2se/1.4.2/download.html) from Sun Microsystems.
° Download Ant 1.6.1 (http://ant.apache.org/) or higher from the Apache Software

Foundation.
° Find more resources for how to use the Standard Widget Toolkit and JFace on the

Eclipse Web site, including:
° Understanding Layouts in SWT (Eclipse Website)
° Building and delivering a table editor with SWT/JFace (Eclipse Website)

° Find more resources for how to use the Standard Widget Toolkit and JFace on
developerWorks, including:
° Integrate ActiveX controls into SWT applications (developerWorks, June 2003)
° Developing JFace wizards (developerWorks, May 2003)

° Find more resources for how to use Eclipse on developerWorks, including:
° Developing Eclipse plug-ins (developerWorks, December 2002)
° XML development with the Eclipse Platform (developerWorks, April 2003)

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Eclipse's Rich Client Platform, Part 2: Extending the generic workbench Page 29 of 30

part2-src.zip
http://www.eclipse.org/downloads/index.php
http://java.sun.com/j2se/1.4.2/download.html
http://ant.apache.org/
http://www.eclipse.org/articles/Understanding%20Layouts/Understanding%20Layouts.htm
http://www.eclipse.org/articles/Article-Table-viewer/table_viewer.html
http://www-106.ibm.com/developerworks/opensource/library/os-activex/
http://www-106.ibm.com/developerworks/library/os-ecjfw/
http://www-106.ibm.com/developerworks/library/os-ecplug/
http://www-106.ibm.com/developerworks/library/os-ecxml/

extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

For more information about the Toot-O-Matic, visit
www-106.ibm.com/developerworks/xml/library/x-toot/ .

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 30 of 30 Eclipse's Rich Client Platform, Part 2: Extending the generic workbench

http://www-106.ibm.com/developerworks/xml/library/x-toot/

	eclipseRCP-1.pdf
	Table of contents
	Before you start
	About this tutorial
	Tools
	About the author

	Overview of Eclipse and the RCP
	The maturation of Eclipse
	What is the RCP?
	Standard Widget Toolkit and JFace
	Eclipse plug-in architecture

	Getting started with the RCP
	Steps to implement an RCP application
	Using the Plug-in Development Environment
	Creating the project
	Understanding the plug-in manifest
	Using the plug-in manifest tags
	Stepping through the plug-in manifest
	Understanding extensions

	Defining a perspective
	Overview of perspectives
	Creating a basic perspective
	Creating a basic perspective, continued

	Defining the WorkbenchAdvisor and Application classes
	Introducing the WorkbenchAdvisor
	Creating the WorkbenchAdvisor class
	Creating the Application class
	Launching the application with the PDE

	Creating a stand-alone application
	Exporting the application
	Preparing the directory structure
	Testing the application

	Summary and resources
	Summary
	Resources

	eclipseRCP-2.pdf
	Table of contents
	Before you start
	About this tutorial
	Tools
	About the author

	Defining a view
	Overview of views
	Defining an org.eclipse.ui.views extension
	Stepping through the org.eclipse.ui.views extension point
	Creating the SearchView class
	Implementing the SearchView class
	Implementing the SearchView class, continued
	Creating the SearchViewLabelProvider class
	Implementing the SearchViewLabelProvider class
	Creating the BrowserView class
	Implementing the BrowserView class
	Integrating the SearchView and BrowserView into a perspective

	Integrating menu bars and dialog boxes
	Adding menu bars to a perspective
	Various types of dialog boxes

	Defining a wizard
	Overview of wizards
	Creating a LicenseKeyWizard class
	Implementing the LicenseKeyWizard class
	Creating a LicenseKeyWizardPage class
	Implementing the LicenseKeyWizardPage class

	Defining an action
	Overview of actions
	Defining the org.eclipse.ui.viewActions extension point
	Stepping through the org.eclipse.ui.viewActions extension point
	Creating the LicenseKeyAction class
	Implementing the LicenseKeyAction class

	Launching the application
	Exporting the application
	Preparing the directory structure
	Testing and executing the application

	Summary and resources
	Summary
	Resources

